Flexible, Hybrid and Printed Electronics

Emerging markets with huge potential for value creation and game changing products.

Conductive films based on the CondAlign technology can form a new category of elements enabling new solutions and products.

A Growing Market

The area of flexible, printed and organic electronics represented just over $30bn in 2018 and is predicted to double by 2024 (IDTechEx). The scope is broad and contains a range of materials and manufacturing processes, used in components and products applicable to many industries.

Flexible electronics and the display industry dominates this area, with displays rapidly transitioning from being on glass substrates, to rigid plastic, to ultimately being bendable. However, others market areas are also well represented e.g. healthcare, consumer electronics, aerospace and military.

Market Pull

The flexible and printed electronics technology has been in development for over 20 years and is still dominated by mature applications. We see a transition towards increased use of novel elements from the flexible electronics area. An example is hybrid electronics where conventional components are used on flexible substrates, and we expect this trend to accelerate and develop.

Strong growth will happen because the technology offers components and processes fulfilling the market expectations for lower costs and improved performance. We satisfy the needs of cost effective manufacturing and the industry’s continuous search for new functionality.

Value Proposition

Advantages of using materials made with the CondAlign alignment technology are again based on the versatility of the process.

With our technology you have the freedom to choose a bonding material that fulfills your requirement specifications. Another advantage is that the properties of the chosen material will be retained due to the low particle loading. Together with the fact that a pitch down to 10µm and below can be achieved, this provides a very powerful advantage over other bonding techniques and materials. 

Substrate for Conductive Inks and Hybrid Electronics

One exciting opportunity for CondAlign’s films are as a substrate, or VIAs, for printing of conductive ink circuits and attaching electrical components. By combining patterns of conductive ink and insulating material, it’s possible to build a complete electronic design with several layers and components.

This process can be an alternative in prototyping work as well as volume production. Using our films as a flexible substrate as described here has the advantage that it will effectively remove multiple steps of the current process, enabling reduction in time and cost for PCBs, copper plating, etching materials and soldering.

Bonding Applications

Conductive adhesives enable curved and flexible screens and are used in LCD screens, smart cards and several other applications. Replacing soldering with anisotropic conductive films (ACFs) is a growing trend, partly because tin-lead solders are a source of health hazards.

Anisotropic conductive adhesive films allows for bonding of extremely small components on fine conductive patternsas well as flex tails on PCBs, and numerous other combinations of components and substrates.

The market for anisotropic conductive adhesive films is expected to pass $1bn in 2020 and $2bn in 2025, where approximately 50% is used in the display industry (IDTechEx). The sheer volume of products containing conductive adhesives makes this a highly attractive market for CondAlign.

An Alternative to Traditional ACFs

As described above, our material is an alternative to traditional ACFs. These require both heat and pressure during the bonding process, while CondAlign’s anisotropic conductive adhesive films can be applied with no additional heat and minimal pressure.

For emerging applications, the traditional anisotropic conductive films may not be suitable with regards to cure speed and the compatibility with non-noble metallization. There is also a push for curing temperature to drop from 170ºC to 120ºC to allow for plastic substrates. This is not an issue for our materials, as no heat is required for the bonding process.

With our current pitch down to at least 10µm, we can achieve bonding of fine structures and small components, also on large areas. This can open for new ways to design and assemble miniaturized products where neither soldering nor traditional ACF are applicable.